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HOST TURBINE HEAT TRANSFER SUBPROJECT OVERVIEW

Herbert J. Gladden
NASA Lewis Research Center
Cleveland, Ohio

The HOST turbine heat transfer subproject is maturing with all programs in
place and many bearing fruit. The accomplishments are interesting, varied, and in
abundance as will be seen at this workshop. The experimental data base are leading
the analyses slightly, particularly in the nonrotating area of research (figs. 1
and 2). This situation is somewhat by tradition and somewhat by design.

The experimental part of the turbine heat transfer subproject consists of six
large experiments, which will be highlighted in this overview, and three of somewhat
more modest scope. Three of the large experiments were conducted in the stationary
frame of reference and are at or near completion. One of the initial efforts was
the stator airfoil heat-transfer program conducted at Allison Gas-Turbine Division.
The non-film-cooled and the showerhead-film-cooled data have already been reported.
Highlights of the data are shown in figure 3. The gill-region film-cooling effort
is currently underway. The investigation of secondary flows in a 90° curved duct,
conducted at the University of Tennessee Space Institute, has also been completed.
The first phase examined flows with a relatively thin inlet boundary layer and low
free-stream turbulence. The second phase studied a thicker inlet boundary layer and
higher free-stream turbulence. A comparison of analytical and experimental
cross-flow velocity vectors is shown for the 60° plane in figure 4. Two experiments
were also conducted at Lewis in the high-pressure facility. One examined
full-coverage film-cooled vanes, and the other, advanced instrumentation. Reports
on some of these results were published last year.

The other three large experimental efforts were conducted in a rotating
reference frame. An experiment to obtain gas-path airfoil heat-transfer
coefficients in the large, low-speed turbine at United Technologies Research Center
has been completed. Single-stage data with both high- and low-inlet turbulence were
taken in phase I. The second phase examined a one and one-half stage turbine and
focused on the second vane row. Under phase III aerodynamic quantities such as
interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and
surface pressure distribution were measured.

Coolant passage heat-transfer data in a rotating frame are also being obtained
at Pratt & Whitney/United Technologies Research Center. Experiments with smooth
wall serpentine passages and with skewed turbulators have been completed. Some
results of the effect of rotation and heat transfer are shown in figure 5 for the
smooth-wall case. An experiment with turbulators normal to the flow will be started

this year.

The final large experiment will be conducted at Lewis in the warm-core
turbine. This facility, which fully scales a modern turbine stage, is being
modified for laser anemonetry access to the vane and blade passages. Research will
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begin in 1987. Once intended to be a step on the way to the high-pressure turbine,
this rig is now the main verification rig in the turbine heat-transfer subproject.

The three smaller and somewhat more fundamental experiments are directed at
important mechanisms. Two are being conducted by Arizona State University. The
first, on impingement cooling, is complete; the second, on tip region heat transfer
simulation, is providing excellent data. An experiment on the heat-transfer effects
of large-scale, high-intensity turbulence, similar to that found at combustor exits,
is also underway at Stanford University.

The analytic efforts in the turbine-heat-transfer subproject are characterized
by efforts to adapt existing codes and analyses to turbine heat transfer. 1In
general these codes and analyses were well established before HOST became involved;
however, the applications were not for turbine heat transfer, and extensive revision
has often been required. In some cases the analytic and experimental work were part
of the same contract.

The well-known STANS boundary-layer code was modified by Allison Gas Turbine
Division to define starting points and transition to turbulent flow to accommodate
their data, with and without film cooling, as well as data in the literature.

United Technologies Research Center assessed its three-dimensional boundary
layer code and modified it to allow for easier application of turbine type inviscid
edge conditions. The same code is being modified for use as a two-dimensional
unsteady code in order to analyze the rotor-stator interaction data.

The also well-known three-dimensional Navier-Stokes TEACH code has been
modified by Pratt & Whitney to incorporate rotational terms. The modified code has
been delivered to NASA Lewis and work has begun on it here.

A fully elliptic three-dimensional Navier-Stokes code has been under
development at Scientific Research Associates (SRA) for many years. It was
primarily directed at inlets and nozzles. SRA, first as a subcontractor to Allison
Gas Turbine Division and now as a prime contractor, has been modifying the code for
turbine applications. This includes grid work for turbine airfoils, adding an
energy equation and turbulence modeling, and improved user friendliness. The code
has been installed on the Lewis Cray XMP, and a first report on its use for turbine
heat-transfer has been published. A comparison with the Allison nonrotating
experimental data is shown in figure 6.

Finally, a fundamental study on numerical turbulence modeling, directed
specifically at the airfoil in the turbine environment, is underway at the
University of Minnesota.
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TURBINE HEAT TRANSFER SUBPROJECT (1)
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Figure 1

TURBINE HEAT TRANSFER SUBPROJECT (2)
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Figure 2
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CRIGINIL PIGE IS
OF POOR QUALITY

EFFECT OF ROTATION ON COOLANT PASSAGE HEAT TRANSFER

HEAT TRANSFER IN MULTIPASS GEOMETRIES IS
ALREADY VERY COMPLEX. ROTATION INTRODUCES
ADDITIONAL FIRST-ORDER EFFECTS WHICH MUST BE
CORRECTLY UNDERSTOOD AND MODELED

HEAT TRANSFER IN SMOOTH-WALLED TEST MODEL
RADIALLY OUTWARD FLOW, FIRST LEG: Re ~ 25,000; A T = 80°F
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Figure 5

CALCULATION OF AIRFOIL HEAT TRANSFER
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Figure 6
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